Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
J Clin Invest ; 134(4)2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38357931

ABSTRACT

Nicotinamide adenine dinucleotide (NAD) is essential for embryonic development. To date, biallelic loss-of-function variants in 3 genes encoding nonredundant enzymes of the NAD de novo synthesis pathway - KYNU, HAAO, and NADSYN1 - have been identified in humans with congenital malformations defined as congenital NAD deficiency disorder (CNDD). Here, we identified 13 further individuals with biallelic NADSYN1 variants predicted to be damaging, and phenotypes ranging from multiple severe malformations to the complete absence of malformation. Enzymatic assessment of variant deleteriousness in vitro revealed protein domain-specific perturbation, complemented by protein structure modeling in silico. We reproduced NADSYN1-dependent CNDD in mice and assessed various maternal NAD precursor supplementation strategies to prevent adverse pregnancy outcomes. While for Nadsyn1+/- mothers, any B3 vitamer was suitable to raise NAD, preventing embryo loss and malformation, Nadsyn1-/- mothers required supplementation with amidated NAD precursors (nicotinamide or nicotinamide mononucleotide) bypassing their metabolic block. The circulatory NAD metabolome in mice and humans before and after NAD precursor supplementation revealed a consistent metabolic signature with utility for patient identification. Our data collectively improve clinical diagnostics of NADSYN1-dependent CNDD, provide guidance for the therapeutic prevention of CNDD, and suggest an ongoing need to maintain NAD levels via amidated NAD precursor supplementation after birth.


Subject(s)
Carbon-Nitrogen Ligases with Glutamine as Amide-N-Donor , NAD , Female , Pregnancy , Humans , Mice , Animals , NAD/metabolism , Niacinamide , Phenotype , Metabolome , Carbon-Nitrogen Ligases with Glutamine as Amide-N-Donor/metabolism
2.
Elife ; 122023 06 05.
Article in English | MEDLINE | ID: mdl-37272612

ABSTRACT

Unlike single-gene mutations leading to Mendelian conditions, common human diseases are likely to be emergent phenomena arising from multilayer, multiscale, and highly interconnected interactions. Atrial and ventricular septal defects are the most common forms of cardiac congenital anomalies in humans. Atrial septal defects (ASD) show an open communication between the left and right atria postnatally, potentially resulting in serious hemodynamic consequences if untreated. A milder form of atrial septal defect, patent foramen ovale (PFO), exists in about one-quarter of the human population, strongly associated with ischaemic stroke and migraine. The anatomic liabilities and genetic and molecular basis of atrial septal defects remain unclear. Here, we advance our previous analysis of atrial septal variation through quantitative trait locus (QTL) mapping of an advanced intercross line (AIL) established between the inbred QSi5 and 129T2/SvEms mouse strains, that show extremes of septal phenotypes. Analysis resolved 37 unique septal QTL with high overlap between QTL for distinct septal traits and PFO as a binary trait. Whole genome sequencing of parental strains and filtering identified predicted functional variants, including in known human congenital heart disease genes. Transcriptome analysis of developing septa revealed downregulation of networks involving ribosome, nucleosome, mitochondrial, and extracellular matrix biosynthesis in the 129T2/SvEms strain, potentially reflecting an essential role for growth and cellular maturation in septal development. Analysis of variant architecture across different gene features, including enhancers and promoters, provided evidence for the involvement of non-coding as well as protein-coding variants. Our study provides the first high-resolution picture of genetic complexity and network liability underlying common congenital heart disease, with relevance to human ASD and PFO.


Subject(s)
Brain Ischemia , Foramen Ovale, Patent , Heart Defects, Congenital , Stroke , Humans , Mice , Animals , Foramen Ovale, Patent/genetics , Phenotype , Gene Expression Profiling
3.
Differentiation ; 128: 1-12, 2022.
Article in English | MEDLINE | ID: mdl-36194927

ABSTRACT

Myhre syndrome is a connective tissue disorder characterized by congenital cardiovascular, craniofacial, respiratory, skeletal, and cutaneous anomalies as well as intellectual disability and progressive fibrosis. It is caused by germline variants in the transcriptional co-regulator SMAD4 that localize at two positions within the SMAD4 protein, I500 and R496, with I500 V/T/M variants more commonly identified in individuals with Myhre syndrome. Here we assess the functional impact of SMAD4-I500V variant, identified in two previously unpublished individuals with Myhre syndrome, and provide novel insights into the molecular mechanism of SMAD4-I500V dysfunction. We show that SMAD4-I500V can dimerize, but its transcriptional activity is severely compromised. Our data show that SMAD4-I500V acts dominant-negatively on SMAD4 and on receptor-regulated SMADs, affecting transcription of target genes. Furthermore, SMAD4-I500V impacts the transcription and function of crucial developmental transcription regulator, NKX2-5. Overall, our data reveal a dominant-negative model of disease for SMAD4-I500V where the function of SMAD4 encoded on the remaining allele, and of co-factors, are perturbed by the continued heterodimerization of the variant, leading to dysregulation of TGF and BMP signaling. Our findings not only provide novel insights into the mechanism of Myhre syndrome pathogenesis but also extend the current knowledge of how pathogenic variants in SMAD proteins cause disease.


Subject(s)
Hand Deformities, Congenital , Intellectual Disability , Humans , Intellectual Disability/genetics , Smad4 Protein/genetics , Mutation , Hand Deformities, Congenital/genetics , Transforming Growth Factor beta/genetics
4.
Data Brief ; 42: 108230, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35592768

ABSTRACT

This dataset represents genes that are dysregulated in the postnatal day 12 (P12) mouse testis when ATRX is specifically inactivated in Sertoli cells (ScAtrxKO mice). The differentially expressed genes included in the dataset may play important roles in the testicular phenotypes observed in the ScAtrxKO mice, which were first reported in our previous work [1]. In fetal ScAtrxKO mice, Sertoli cells undergo apoptosis due to cell cycle defects, resulting in smaller testes with reduced tubule volume [1]. Adult ScAtrxKO mice show a wide range of spermatogenesis defects probably due to a failure of the dysfunctional ATRX protein to interact with the androgen receptor (AR) [1]. ATRX, a chromatin remodeling protein, is widely expressed in the human testis including Sertoli cells [2,3]. In XY individuals, the loss of ATRX leads to ATR-X (alpha thalassemia, mental retardation, X-linked) syndrome associated with a wide range of genital abnormalities such as hypospadias, ambiguous genitalia, and small testes with reduced tubule volume [4], [5], [6], [7], [8]. Our dataset contributes towards understanding the mechanism underlying ATRX regulation of testis development and spermatogenesis.

6.
Hum Mol Genet ; 29(4): 566-579, 2020 03 13.
Article in English | MEDLINE | ID: mdl-31813956

ABSTRACT

Congenital heart disease (CHD) is the most common birth defect and brings with it significant mortality and morbidity. The application of exome and genome sequencing has greatly improved the rate of genetic diagnosis for CHD but the cause in the majority of cases remains uncertain. It is clear that genetics, as well as environmental influences, play roles in the aetiology of CHD. Here we address both these aspects of causation with respect to the Notch signalling pathway. In our CHD cohort, variants in core Notch pathway genes account for 20% of those that cause disease, a rate that did not increase with the inclusion of genes of the broader Notch pathway and its regulators. This is reinforced by case-control burden analysis where variants in Notch pathway genes are enriched in CHD patients. This enrichment is due to variation in NOTCH1. Functional analysis of some novel missense NOTCH1 and DLL4 variants in cultured cells demonstrate reduced signalling activity, allowing variant reclassification. Although loss-of-function variants in DLL4 are known to cause Adams-Oliver syndrome, this is the first report of a hypomorphic DLL4 allele as a cause of isolated CHD. Finally, we demonstrate a gene-environment interaction in mouse embryos between Notch1 heterozygosity and low oxygen- or anti-arrhythmic drug-induced gestational hypoxia, resulting in an increased incidence of heart defects. This implies that exposure to environmental insults such as hypoxia could explain variable expressivity and penetrance of observed CHD in families carrying Notch pathway variants.


Subject(s)
Gene-Environment Interaction , Genetic Predisposition to Disease , Genomics/methods , Heart Defects, Congenital/pathology , Mutation , Receptor, Notch1/genetics , Animals , Case-Control Studies , Female , Heart Defects, Congenital/etiology , Heart Defects, Congenital/genetics , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Exome Sequencing
7.
Hum Mol Genet ; 29(7): 1068-1082, 2020 05 08.
Article in English | MEDLINE | ID: mdl-31625560

ABSTRACT

Pre-B cell leukemia factor 1 (PBX1) is an essential developmental transcription factor, mutations in which have recently been associated with CAKUTHED syndrome, characterized by multiple congenital defects including congenital heart disease (CHD). During analysis of a whole-exome-sequenced cohort of heterogeneous CHD patients, we identified a de novo missense variant, PBX1:c.551G>C p.R184P, in a patient with tetralogy of Fallot with absent pulmonary valve and extra-cardiac phenotypes. Functional analysis of this variant by creating a CRISPR-Cas9 gene-edited mouse model revealed multiple congenital anomalies. Congenital heart defects (persistent truncus arteriosus and ventricular septal defect), hypoplastic lungs, hypoplastic/ectopic kidneys, aplastic adrenal glands and spleen, as well as atretic trachea and palate defects were observed in the homozygous mutant embryos at multiple stages of development. We also observed developmental anomalies in a proportion of heterozygous embryos, suggestive of a dominant mode of inheritance. Analysis of gene expression and protein levels revealed that although Pbx1 transcripts are higher in homozygotes, amounts of PBX1 protein are significantly decreased. Here, we have presented the first functional model of a missense PBX1 variant and provided strong evidence that p.R184P is disease-causal. Our findings also expand the phenotypic spectrum associated with pathogenic PBX1 variants in both humans and mice.


Subject(s)
CRISPR-Cas Systems/genetics , Heart Defects, Congenital/genetics , Pre-B-Cell Leukemia Transcription Factor 1/genetics , Truncus Arteriosus, Persistent/genetics , Adult , Animals , Disease Models, Animal , Exome/genetics , Female , Heart Defects, Congenital/pathology , Heterozygote , Humans , Infant , Male , Mice , Mutation, Missense/genetics , Pedigree , Phenotype , Truncus Arteriosus, Persistent/pathology , Exome Sequencing
8.
Genet Med ; 21(5): 1111-1120, 2019 05.
Article in English | MEDLINE | ID: mdl-30293987

ABSTRACT

PURPOSE: Congenital heart disease (CHD) affects up to 1% of live births. However, a genetic diagnosis is not made in most cases. The purpose of this study was to assess the outcomes of genome sequencing (GS) of a heterogeneous cohort of CHD patients. METHODS: Ninety-seven families with probands born with CHD requiring surgical correction were recruited for genome sequencing. At minimum, a proband-parents trio was sequenced per family. GS data were analyzed via a two-tiered method: application of a high-confidence gene screen (hcCHD), and comprehensive analysis. Identified variants were assessed for pathogenicity using the American College of Medical Genetics and Genomics-Association for Molecular Pathology (ACMG-AMP) guidelines. RESULTS: Clinically relevant genetic variants in known and emerging CHD genes were identified. The hcCHD screen identified a clinically actionable variant in 22% of families. Subsequent comprehensive analysis identified a clinically actionable variant in an additional 9% of families in genes with recent disease associations. Overall, this two-tiered approach provided a clinically relevant variant for 31% of families. CONCLUSIONS: Interrogating GS data using our two-tiered method allowed identification of variants with high clinical utility in a third of our heterogeneous cohort. However, association of emerging genes with CHD etiology, and development of novel technologies for variant assessment and interpretation, will increase diagnostic yield during future reassessment of our GS data.


Subject(s)
Genetic Testing/methods , Heart Defects, Congenital/diagnosis , Heart Defects, Congenital/genetics , Base Sequence/genetics , Chromosome Mapping/methods , Cohort Studies , Exome/genetics , Family , Female , Genetic Predisposition to Disease/genetics , Genetic Variation/genetics , Genomics/methods , High-Throughput Nucleotide Sequencing/methods , Humans , Male , Mutation/genetics , Parents , Sequence Analysis, DNA/methods , Whole Genome Sequencing/methods
9.
Data Brief ; 9: 194-8, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27656672

ABSTRACT

The data presents the genes that are differentially up-regulated or down-regulated in response to SOX9 in a human Sertoli-like cell line, NT2/D1. The dataset includes genes that may be implicated in gonad development and are further explored in our associated article, "SOX9 Regulates Expression of the Male Fertility Gene Ets Variant Factor 5 (ETV5) during Mammalian Sex Development" (D. lankarage, R. Lavery, T. Svingen, S. Kelly, L.M. Ludbrook, S. Bagheri-Fam, et al., 2016) [1]. The necessity of SOX9 for male sex development is evident in instances where SOX9 is lost, as in 46, XY DSD where patients are sex reversed or in mouse knock-out models, where mice lacking Sox9 are sex reversed. Despite the crucial nature of this transcriptional activator, downstream target genes of SOX9 remain largely undiscovered. Here, we have utilized NT2/D1 cells to transiently over-express SOX9 and performed microarray analysis of the RNA. Microarray data are available in the ArrayExpress database (www.ebi.ac.uk/arrayexpress) under accession number E-MTAB-3378.

10.
Int J Biochem Cell Biol ; 79: 41-51, 2016 10.
Article in English | MEDLINE | ID: mdl-27498191

ABSTRACT

In humans, dysregulation of the sex determining gene SRY-box 9 (SOX9) leads to disorders of sex development (DSD). In mice, knock-out of Sox9 prior to sex determination leads to XY sex reversal, while Sox9 inactivation after sex determination leads to spermatogenesis defects. SOX9 specifies the differentiation and function of Sertoli cells from somatic cell precursors, which then orchestrate the development and maintenance of other testicular cell types, largely through unknown mechanisms. Here, we describe a novel testicular target gene of SOX9, Ets variant factor 5 (ETV5), a transcription factor responsible for maintaining the spermatogonial stem cell niche. Etv5 was highly expressed in wild-type XY but not XX mouse fetal gonads, with ETV5 protein localized in the Sertoli cells, interstitial cells and germ cells of the testis. In XY Sox9 knock-out gonads, Etv5 expression was strongly down-regulated. Similarly, knock-down of SOX9 in the human Sertoli-like cell line NT2/D1 caused a decrease in ETV5 gene expression. Transcriptomic analysis of NT2/D1 cells over-expressing SOX9 showed that ETV5 expression was increased in response to SOX9. Moreover, chromatin immunoprecipitation of these cells, as well as of embryonic mouse gonads, showed direct binding of SOX9 to ETV5 regulatory regions. We demonstrate that SOX9 was able to activate ETV5 expression via a conserved SOX site in the 5' regulatory region, mutation of which led to loss of activation. In conclusion, we present a novel target gene of SOX9 in the testis, and suggest that SOX9 regulation of ETV5 contributes to the control of male fertility.


Subject(s)
DNA-Binding Proteins/genetics , Fertility/genetics , Gene Expression Regulation, Developmental , SOX9 Transcription Factor/metabolism , Transcription Factors/genetics , Animals , Cell Line , Gene Knockout Techniques , Male , Mice , Sertoli Cells/metabolism , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...